
2026/02/06 10:00 1/5 GPT Patcher

Wulf's Various Things - http://wuff.dyndns.org/

GPT Patcher

ChatGPT can provide a unified patch as output for code related changes (project instructions or
prompt example 'return diffs of the changes proposed for ease of applying them.'). These unified
patches are in a format not understood by git or the patch command. They do not contain specific line
numbers but context surrounding the changes. To avoid issues with GPT hallucinations, strict checks
need to be performed.

The script below can help apply these patches. It accepts file, stdin, clipboard or interactive manual
paste as source for the patch, parses it for the target filename, checks if it can apply the patch and
outputs the newly patched file. Command line option -i can replace the original file immediately, but
creates backup files. Command line option -t can be used to patch a different filename. On errors, the
script will abort.

gpt-patcher.py

#!/usr/bin/env python3
import argparse
import os
import re
import sys
import shutil
 
try:
    import pyperclip
except ImportError:
    pyperclip = None
 
 
PATCH_BEGIN = "*** Begin Patch"
PATCH_END = "*** End Patch"
PATCH_UPDATE_FILE = "*** Update File:"
 
 
def read_patch_input(source: str = None):
    """Read patch from file, stdin, clipboard, or prompt."""
    if source:
        with open(source, "r", encoding="utf-8") as f:
            data = f.read()
    elif not sys.stdin.isatty():
        data = sys.stdin.read()
    else:
        clip = pyperclip.paste().strip() if pyperclip else ""
        if clip:
            print("Using patch from clipboard.")
            data = clip
        else:
            if pyperclip:
                print("No valid patch detected in clipboard.")

http://wuff.dyndns.org/doku.php?do=export_code&id=python:gpt-patcher&codeblock=0


Last update: 2025/11/07 16:09 python:gpt-patcher http://wuff.dyndns.org/doku.php?id=python:gpt-patcher&rev=1762531794

http://wuff.dyndns.org/ Printed on 2026/02/06 10:00

            print("Please paste your patch below, then press Ctrl-D
(Linux/macOS) or Ctrl-Z (Windows) when done:\n")
            try:
                data = sys.stdin.read()
            except KeyboardInterrupt:
                sys.exit("\nAborted.")
    return data.strip()
 
 
def detect_patch_format(data: str):
    """Return (has_header, has_update_line) flags."""
    has_header = PATCH_BEGIN in data and PATCH_END in data
    has_update_line = PATCH_UPDATE_FILE in data
    return has_header, has_update_line
 
 
def parse_patch(data: str, filename_override=None):
    """Extract the target filename and list of hunks."""
    match = re.search(r"\*\*\* Update File:\s*(.+)", data)
    filename = match.group(1).strip() if match else filename_override
 
    if not filename:
        filename = input("No target file specified. Please enter the
filename to patch: ").strip()
        if not filename:
            sys.exit("Error: Target filename required.")
 
    # Extract hunks (between @@ markers)
    hunks = []
    current_hunk = []
    in_hunk = False
    for line in data.splitlines():
        if line.startswith("@@"):
            if current_hunk:
                hunks.append(current_hunk)
            current_hunk = []
            in_hunk = True
        elif in_hunk:
            current_hunk.append(line)
    if current_hunk:
        hunks.append(current_hunk)
    return filename, hunks
 
 
def make_backup(path: str):
    """Create sequential .bak backups if needed."""
    base_backup = path + ".bak"
    if not os.path.exists(base_backup):
        shutil.copy2(path, base_backup)
        return base_backup
 



2026/02/06 10:00 3/5 GPT Patcher

Wulf's Various Things - http://wuff.dyndns.org/

    i = 1
    while True:
        backup_name = f"{base_backup}{i}"
        if not os.path.exists(backup_name):
            shutil.copy2(path, backup_name)
            return backup_name
        i += 1
 
 
def find_and_replace_block(content, old_block, new_block,
context_before=None, context_after=None, filename=None):
    """Find a full old_block with optional context and replace with
new_block."""
    pattern_parts = []
    if context_before:
        pattern_parts.append(re.escape(context_before))
    pattern_parts.append(re.escape(old_block))
    if context_after:
        pattern_parts.append(re.escape(context_after))
 
    pattern = "(?s)" + ".*?".join(pattern_parts)
    match = re.search(pattern, content)
    if not match:
        # Try looser match
        match = re.search(re.escape(old_block), content)
        if not match:
            sys.exit(
                f"Error: Could not find patch target block in
'{filename}' containing:\n{old_block.strip()[:200]}"
            )
 
    start, end = match.span()
    return content[:start] + content[start:end].replace(old_block,
new_block, 1) + content[end:]
 
 
def apply_hunk_to_content(content: str, hunk, filename):
    """Apply a hunk (multi-line context aware)."""
    minus_lines, plus_lines, context_lines = [], [], []
 
    for line in hunk:
        if line.startswith("-"):
            minus_lines.append(line[1:])
        elif line.startswith("+"):
            plus_lines.append(line[1:])
        elif line.startswith(" "):
            context_lines.append(line[1:])
 
    old_block = "\n".join(minus_lines)
    new_block = "\n".join(plus_lines)
    context_before = "\n".join(context_lines[:3]) if context_lines else



Last update: 2025/11/07 16:09 python:gpt-patcher http://wuff.dyndns.org/doku.php?id=python:gpt-patcher&rev=1762531794

http://wuff.dyndns.org/ Printed on 2026/02/06 10:00

None
    context_after = "\n".join(context_lines[-3:]) if context_lines else
None
 
    return find_and_replace_block(content, old_block, new_block,
context_before, context_after, filename)
 
 
def apply_patch_to_file(filename, hunks):
    """Apply patch hunks to file contents."""
    with open(filename, "r", encoding="utf-8") as f:
        content = f.read()
 
    for hunk in hunks:
        content = apply_hunk_to_content(content, hunk, filename)
 
    return content
 
 
def main():
    parser = argparse.ArgumentParser(description="Apply ChatGPT or raw
unified diffs to files.")
    parser.add_argument("patchfile", nargs="?", help="File containing
the patch (optional)")
    parser.add_argument("-i", "--in-place", action="store_true",
help="Replace original file (create backup)")
    parser.add_argument("-t", "--target", help="Apply patch to this
file instead of the one mentioned in patch")
 
    args = parser.parse_args()
 
    data = read_patch_input(args.patchfile)
    has_header, has_update_line = detect_patch_format(data)
 
    # If header present but update line missing, prompt for file
    patch_file, hunks = parse_patch(data,
filename_override=args.target)
 
    if not os.path.exists(patch_file):
        sys.exit(f"Error: Target file '{patch_file}' not found.")
 
    result = apply_patch_to_file(patch_file, hunks)
 
    if args.in_place:
        backup = make_backup(patch_file)
        with open(patch_file, "w", encoding="utf-8") as f:
            f.write(result)
        print(f"Patched {patch_file} (backup: {backup})")
    else:
        sys.stdout.write(result)
 



2026/02/06 10:00 5/5 GPT Patcher

Wulf's Various Things - http://wuff.dyndns.org/

 
if __name__ == "__main__":
    main()

From:
http://wuff.dyndns.org/ - Wulf's Various Things

Permanent link:
http://wuff.dyndns.org/doku.php?id=python:gpt-patcher&rev=1762531794

Last update: 2025/11/07 16:09

http://wuff.dyndns.org/
http://wuff.dyndns.org/doku.php?id=python:gpt-patcher&rev=1762531794

	GPT Patcher

