
2026/01/25 05:55 1/8 Deezer Album Tracker

Wulf's Various Things - http://wuff.dyndns.org/

Deezer Album Tracker

This script uses the deezer public api to provide a list of albums released the past half year of artists
in the configuration file. Configuration file will be created if it doesn't exist. Adding/removing artists
can be done using command line options. The output can be emailed for easy use from cron with
customisable subject line.

Depending on network speed and amount of albums per artist and due to deezer API rate limit of max
50 requests per 5 seconds, querying 180 days for 235 artists takes about 1:45 minutes.

Prerequisites for fuzzy search:

pip install fuzzywuzzy

Usage:

usage: dat.py [-h] [--list] [--days DAYS] [--add ARTIST_NAME] [--delete
SEARCH_TERM] [--email]

Deezer Album Tracker

options:
 -h, --help show this help message and exit
 --list List all monitored artists
 --days DAYS Amount of days to list
 --add ARTIST_NAME Add a new artist
 --delete SEARCH_TERM Delete an artist by fuzzy search
 --email Email the output

Example output:

$ /dat.py --days 7
Albums released in the past 7 days:

Release Date: 2024-04-19
Artist: Staind
Album Name: Better Days (feat. Dorothy) (1 track)
Link: https://www.deezer.com/album/571491071

Release Date: 2024-04-19
Artist: Distilled Harmony
Album Name: Nova (3 tracks)
Link: https://www.deezer.com/album/572632871

Release Date: 2024-04-19
Artist: Taylor Swift
Album Name: THE TORTURED POETS DEPARTMENT [EXPLICIT] (16 tracks)
Link: https://www.deezer.com/album/574109801

Last update: 2024/04/21 20:05 python:deezer-album-tracker http://wuff.dyndns.org/doku.php?id=python:deezer-album-tracker

http://wuff.dyndns.org/ Printed on 2026/01/25 05:55

Example config file:

config.json

{
 "global": {
 "days": 180
 },
 "email": {
 "smtp_server": "emailserver",
 "smtp_port": 587,
 "sender_email": "emailaddress",
 "sender_password": "password",
 "email_recipients": [
 "email1@googlemail.com",
 "email2@googlemail.com"
],
 "email_subject": "Deezer Album Tracker"
 },
 "artist_ids": {
 "89": "Papa Roach",
 "566": "Foo Fighters",
 "93": "Limp Bizkit",
 "1070": "Puddle of Mudd",
 "373": "Staind"
 }
}

To add artists in bulk, the simplest way is to create a text file with an artist on each line, then use the
following bash command to let dat.py search deezer for the id and add it to the config file:

while read p; do ./dat.py --add "$p"; done <artists.txt

dat.py

#!/usr/bin/python
import ssl
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import requests
import json
from datetime import datetime, timedelta
import time
import argparse
from fuzzywuzzy import fuzz, process
import os

Constants for file paths

http://wuff.dyndns.org/doku.php?do=export_code&id=python:deezer-album-tracker&codeblock=3
http://wuff.dyndns.org/doku.php?do=export_code&id=python:deezer-album-tracker&codeblock=5

2026/01/25 05:55 3/8 Deezer Album Tracker

Wulf's Various Things - http://wuff.dyndns.org/

CONFIG_FILENAME = "config.json"
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
CONFIG_FILE = os.path.join(SCRIPT_DIR, CONFIG_FILENAME)

def load_config():
 if not os.path.exists(CONFIG_FILE):
 # Create default config file if it doesn't exist
 default_config = {
 "global": {
 "days": "180"
 },
 "email": {
 "smtp_server": "smtp.example.com",
 "smtp_port": 587,
 "sender_email": "sender@example.com",
 "sender_password": "password",
 "email_recipients": ["recipient1@example.com",
"recipient2@example.com"],
 "email_subject": "Deezer Album Tracker"
 },
 "artist_ids": []
 }
 with open(CONFIG_FILE, "w") as config_file:
 json.dump(default_config, config_file, indent=4)

 with open(CONFIG_FILE, "r") as config_file:
 return json.load(config_file)

def save_config(config):
 with open(CONFIG_FILE, "w") as config_file:
 json.dump(config, config_file, indent=4)

def send_email(body):
 config = load_config()
 email_config = config.get('email', {})
 if not email_config:
 print("Email configuration not found in config file.")
 return

 smtp_server = email_config.get('smtp_server')
 smtp_port = email_config.get('smtp_port')
 sender_email = email_config.get('sender_email')
 sender_password = email_config.get('sender_password')
 email_subject = config.get('email_subject', 'Deezer Album Tracker')

 msg = MIMEMultipart()
 msg['From'] = sender_email
 msg['To'] = ', '.join(email_config.get('email_recipients'))

Last update: 2024/04/21 20:05 python:deezer-album-tracker http://wuff.dyndns.org/doku.php?id=python:deezer-album-tracker

http://wuff.dyndns.org/ Printed on 2026/01/25 05:55

 msg['Subject'] = f"{email_subject} - {datetime.now().strftime('%Y-
%m-%d')}"

 body = MIMEText(body)
 msg.attach(body)

 # Use TLS
 context = ssl.create_default_context()

 with smtplib.SMTP(smtp_server, smtp_port) as server:
 server.ehlo() # Can be omitted
 server.starttls(context=context)
 server.ehlo() # Can be omitted
 server.login(sender_email, sender_password)
 server.send_message(msg)

def get_artist_name(artist_id):
 url = f"https://api.deezer.com/artist/{artist_id}"
 response = requests.get(url)
 if response.status_code == 200:
 data = response.json()
 return data.get('name', '')
 return ''

def get_artist_id(artist_name):
 url = f"https://api.deezer.com/search/artist?q={artist_name}"
 response = requests.get(url)
 if response.status_code == 200:
 data = response.json()
 for artist in data.get('data', []):
 if fuzz.token_sort_ratio(artist_name, artist['name']) >=
90:
 return artist['id']
 return None

def get_albums(artist_ids, lookupdays):
 base_url = "https://api.deezer.com/artist/{}/albums"
 earliest_release = (datetime.now() -
timedelta(days=lookupdays)).strftime('%Y-%m-%d')
 albums = []
 request_count = 0
 start_time = time.time()

 today = datetime.today().strftime('%Y-%m-%d')

 for artist_id in artist_ids:
 url = base_url.format(artist_id)
 response = requests.get(url)

2026/01/25 05:55 5/8 Deezer Album Tracker

Wulf's Various Things - http://wuff.dyndns.org/

 request_count += 1
 if response.status_code == 200:
 data = response.json()
 artist_name = get_artist_name(artist_id)
 for album in data['data']:
 release_date = datetime.strptime(album['release_date'],
'%Y-%m-%d')
 if (datetime.strptime(earliest_release, '%Y-%m-%d') <=
release_date <=
 datetime.strptime(today, '%Y-%m-%d')):
 trackresponse = requests.get(album['tracklist'])
 request_count += 1
 if trackresponse.status_code == 200:
 tracklist = trackresponse.json()
 trackamount = tracklist['total']
 else:
 trackamount = 0

 albums.append({
 'artist': artist_name,
 'album_name': album['title'],
 'release_date': album['release_date'],
 'trackamount': trackamount,
 'explicit_lyrics': album['explicit_lyrics'],
 'link': album['link']
 })

 # Deezer rate limit is 50 requests / 5 seconds. Limiting to
40/5 here:
 # Check if 40 requests have been made in less than 5 seconds
 if request_count == 40:
 elapsed_time = time.time() - start_time
 if elapsed_time < 5:
 time.sleep(5 - elapsed_time)
 # Reset request count and start time
 request_count = 0
 start_time = time.time()

 return sorted(albums, key=lambda x: x['release_date'],
reverse=True)

def list_artists():
 config = load_config()
 subscribed_artists = config.get('artist_ids', {})
 sorted_artists = dict(sorted(subscribed_artists.items(), key=lambda
item: item[1].casefold()))
 for artist_id, artist_name in sorted_artists.items():
 print(f"{artist_name} ({artist_id})")

Last update: 2024/04/21 20:05 python:deezer-album-tracker http://wuff.dyndns.org/doku.php?id=python:deezer-album-tracker

http://wuff.dyndns.org/ Printed on 2026/01/25 05:55

def add_artist(artist_name):
 config = load_config()
 artist_id = get_artist_id(artist_name)
 if artist_id:
 artist_name_from_api = get_artist_name(artist_id) # Fetch
artist name from Deezer API
 config['artist_ids'][artist_id] = artist_name_from_api # Add
artist name to config
 save_config(config)
 print(f"Artist '{artist_name_from_api}' added successfully.")
 else:
 print("Artist not found.")

def delete_artist(search_term):
 config = load_config()
 subscribed_artists = config.get('artist_ids', {})

 choices = process.extract(search_term, subscribed_artists.values(),
limit=5)
 print("Fuzzy search results:")
 for index, (artist_name, score) in enumerate(choices):
 print(f"{index + 1}. {artist_name} ({score})")
 choice_input = input("Enter the number of the artist to delete: ")
 if choice_input.isnumeric():
 choice_index = int(choice_input) - 1
 if 0 <= choice_index < len(choices):
 artist_name = choices[choice_index][0]
 artist_id = [key for key, value in
subscribed_artists.items() if value == artist_name][0]
 del config['artist_ids'][artist_id]
 save_config(config)
 print(f"Artist '{artist_name}' deleted successfully.")
 else:
 print("Invalid choice.")
 else:
 print("No number entered.")

def main():
 parser = argparse.ArgumentParser(description="Deezer Album
Tracker")
 parser.add_argument("--list", action="store_true", help="List all
monitored artists")
 parser.add_argument("--days", metavar="DAYS", help="Amount of days
to list")
 parser.add_argument("--add", metavar="ARTIST_NAME", help="Add a new
artist")
 parser.add_argument("--delete", metavar="SEARCH_TERM", help="Delete
an artist by fuzzy search")
 parser.add_argument("--email", action="store_true", help="Email the

2026/01/25 05:55 7/8 Deezer Album Tracker

Wulf's Various Things - http://wuff.dyndns.org/

output")

 args = parser.parse_args()

 if args.list:
 list_artists()
 elif args.add:
 add_artist(args.add)
 elif args.delete:
 delete_artist(args.delete)
 else:
 config = load_config()
 artist_ids = config.get('artist_ids', [])
 if args.days:
 lookupdays = int(args.days)
 else:
 lookupdays = config.get('global', {})['days']
 albums = get_albums(artist_ids, lookupdays)

 output = f"Albums released in the past {lookupdays} days:\n\n"
 for album in albums:
 output += f"Release Date: {album['release_date']}\n"
 output += f"Artist: {album['artist']}\n"
 output += f"Album Name: {album['album_name']}"
 if album['explicit_lyrics'] is True:
 output += " [EXPLICIT]"
 if album['trackamount'] > 0:
 output += f" ({album['trackamount']} track"
 if album['trackamount'] > 1:
 output += "s"
 output += ")"
 output += "\n"
 output += f"Link: {album['link']}\n"
 output += "\n"
 print(output)

 if args.email:
 send_email(output)

if __name__ == "__main__":
 main()

From:
http://wuff.dyndns.org/ - Wulf's Various Things

Permanent link:
http://wuff.dyndns.org/doku.php?id=python:deezer-album-tracker

Last update: 2024/04/21 20:05

http://wuff.dyndns.org/
http://wuff.dyndns.org/doku.php?id=python:deezer-album-tracker

Last update: 2024/04/21 20:05 python:deezer-album-tracker http://wuff.dyndns.org/doku.php?id=python:deezer-album-tracker

http://wuff.dyndns.org/ Printed on 2026/01/25 05:55

	Deezer Album Tracker

