
2026/01/17 18:39 1/6 Convert images/videos

Wulf's Various Things - http://wuff.dyndns.org/

Convert images/videos

Lossless conversion of webp to png

sudo apt-get install webp
dwebp file.webp -o file.png

#check:
convert file.webp ppm:- | sha1sum
convert file.png ppm:- | sha1sum
#or
if ["$(convert file.webp ppm:- | sha1sum)" == "$(convert file.png ppm:- |
sha1sum)"]; then echo "equal"; else echo "not equal"; fi

#recursively converting:
find . -name '*.webp' -type f -exec bash -c 'dwebp "$0" -o "${0%.webp}.png"'
{} \;
#find . -type f -name '*.webp' -delete

lossless conversion of png to webp

cwebp -z 9 "file.png" -o "file.webp"

#recursively converting:
find . -name '*.png' -type f -exec bash -c 'cwebp -z 9 "$0" -o
"${0%.png}.webp"' {} \;
#find . -type f -name '*.png' -delete

lossless changing containers between webm/mov/mp4/mkv

webm/mov/mkv/mp4 are container formats and can contain various encoded video or audio streams.
To change the container between each other, the following command can be used, provided the used
codecs inside the containers are compatible:

ffmpeg -i file.webm -c:a copy -c:v copy file.mkv

#recursively changing containers:
find . -iname '*.webm' -type f -exec bash -c 'ffmpeg -i "$0" -c:a copy -c:v
copy "${0%.*}.mkv"' {} \;
#find . -type f -iname '*.webm' -delete

#lossless change container mkv, webm, mov -> mp4
find . -type f \(-iname "*.mkv" -o -iname "*.webm -o -iname "*.mov\) |
while read f; do

Last update: 2024/07/28 12:56 howto:convert-images http://wuff.dyndns.org/doku.php?id=howto:convert-images&rev=1722167788

http://wuff.dyndns.org/ Printed on 2026/01/17 18:39

 ffmpeg -i "$f" -codec copy "${f%.*}.mp4"
done

high quality conversion to mp4

#High quality non-mp4 to mp4 conversion
find . -type f \(-iname "*.mpg" -o -iname "*.asf" -o -iname "*.wmv" -o -
iname "*.mpg" -o -iname "*.mpeg" -o -iname "*.avi" -o -iname "*.divx" -o -
iname "*.rmvb" -o -iname "*.rm" -o -iname "*.m4v" -o -iname "*.flv" \) |
while read f; do
 ffmpeg -nostdin -i "$f" -vcodec libx264 -acodec aac "${f%.*}.mp4"
done

find all non-mp4 files

#Find non-mp4 files
find . -type f -not \(-iname "*.mp4" \)

downscale video to 720p mkv

The following command scales a video to 720p x264 codec with 30fps target framerate, copying the
audio as is and any subtitles while reducing the overall quality with CRF of 28.

ffmpeg -i input.mp4 -vf scale=-1:720 -c:v libx264 -r 30 -crf 28 -c:a copy -
scodec copy output.720p.mkv

CRF option explained:

The range of the quantizer scale is 0-51: where 0 is lossless, 23 is default, and 51 is worst1.
possible. A lower value is a higher quality and a subjectively sane range is 18-28. Consider 18 to
be visually lossless or nearly so: it should look the same or nearly the same as the input but it
isn't technically lossless.
The range is exponential, so increasing the CRF value +6 is roughly half the bitrate while -6 is2.
roughly twice the bitrate. General usage is to choose the highest CRF value that still provides an
acceptable quality. If the output looks good, then try a higher value and if it looks bad then
choose a lower value.

Scale option -1 means the output has to be divisible by 1 with same aspect ratio. Scale option -2
means the output has to be divisible by 2, etc.

To limit bitrate to 2Mbit, add

-b:v 2M -maxrate 2M -bufsize 1M

Useful bash script, put in ~/.local/bin and chmod +x it after:

2026/01/17 18:39 3/6 Convert images/videos

Wulf's Various Things - http://wuff.dyndns.org/

video_downscale.sh

#!/bin/bash
maxwidth=1280
maxheight=720
bitrate="2M"
bufsize="1M"
mp4 is better for streaming, mkv supports all sorts of mixed codecs
and subtitles
#container="mkv"
container="mp4"
#encoder="libx264" #libx264 = CPU, better quality and much smaller
filesize; h264_amf = AMD GPU; h265_nvenv = Nvidia GPU; h264_qsv = Intel
GPU

ffpb is a wrapper for ffmpeg to show a progress bar and the remaining
time.
install it using:
pip install ffpb

Check if ffpb is installed, then use it, otherwise use normal ffmpeg
builtin type -P "ffpb" &> /dev/null && binary="ffpb" || binary="ffmpeg"

Check if a parameter is provided
if [-z "$1"]; then
 echo "Usage: "$(basename $0)" <file or files>"
 exit 1
fi

for input in "$@";
do
 if [-f "$input"]; then
 echo "Processing file: $input"
 output="${input%.*}.convertednew"
 # Check if mp4 container is desired and if subtitle is ASS
format, then convert to srt, otherwise just copy subs
 subtitles_present=$(ffprobe -v error -select_streams s -
show_entries stream=codec_name -of csv=p=0:s=x "$input")
 if ["$subtitles_present" == "ass"] && ["$container" == "mp4"
];
 then
 subtitle_option="-c:s mov_text -metadata:s:s:0 language=en"
 else
 subtitle_option="-scodec copy"
 fi
 #check framerate to only ever reduce it and not increase it
 # ffprobe returns 25/1 or 24000/1001. result needs to be
calculated and needs to be an integer, thus the bash $(()).
 fps=$(ffprobe -v 0 -of csv=p=0 -select_streams v -show_entries
stream=avg_frame_rate "$input" | sed 's#/# / #g')
 if ["$fps" == "0 / 0"]; then

http://wuff.dyndns.org/doku.php?do=export_code&id=howto:convert-images&codeblock=7

Last update: 2024/07/28 12:56 howto:convert-images http://wuff.dyndns.org/doku.php?id=howto:convert-images&rev=1722167788

http://wuff.dyndns.org/ Printed on 2026/01/17 18:39

 # some video files return 0 / 0 for avg_frame_rate, using
r_frame_rate instead
 fps=$(ffprobe -v 0 -of csv=p=0 -select_streams v -
show_entries stream=r_frame_rate "$input" | sed 's#/# / #g')
 fi
 fps=$(($fps))
 if [$fps -gt 30]; then
 fps_option="-r 30"
 else
 fps_option=""
 fi
 #-c:a copy #copies audio as is, but mp4 works best with aac
and wma cannot be in mp4 files
 #$binary -i "$input" -vf scale=-2:$resolution -c:v libx264 -r
30 -crf 28 -c:a aac -scodec copy -b:v $bitrate -maxrate $bitrate -
bufsize $bufsize "$output"
 # using complex filter to prevent upscaling and only ever
downscale
 cmd=$binary' -i "'"$input"'" -filter_complex
"scale=ceil(iw*min(1\,min('$maxwidth'/iw\,'$maxheight'/ih))/2)*2:-2" -
c:v libx264 '$fps_option' -crf 28 -c:a aac '$subtitle_option' -b:v
'$bitrate' -maxrate '$bitrate' -bufsize '$bufsize' -f '$container'
"'"$output"'"'
 $binary -i "$input" -filter_complex
"scale=ceil(iw*min(1\,min($maxwidth/iw\,$maxheight/ih))/2)*2:-2" -c:v
libx264 $fps_option -crf 28 -c:a aac $subtitle_option -b:v $bitrate -
maxrate $bitrate -bufsize $bufsize -f $container "$output"
 if [$? -eq 0];
 then
 actualheight=$(ffprobe -v error -select_streams v -
show_entries stream=height -of csv=p=0:s=x "$output")
 #output2="${output%.*}."$actualheight"p.$container"
output2="${output//.convertednew/.$actualheight""p.}$container"
 mv "$output" "$output2"
 echo "Output file: $output2"
 else
 echo "An error occured. File not converted properly!"
 echo "Full ffmpeg command:"
 echo "${cmd//ffpb/ffmpeg}"
 fi
 fi
done

When using in Nemo, it's helpful to force a key to be pressed before
closing the terminal to see the status or any errors. Uncomment the
following line:

#echo;read -rsn1 -p "Press any key to continue . . .";echo

To add this to Nemo filemanager as right-click option for video files, create a nemo_action file in

2026/01/17 18:39 5/6 Convert images/videos

Wulf's Various Things - http://wuff.dyndns.org/

~/.local/share/nemo/actions

video_downscale.nemo_action

[Nemo Action]
Name=Video Downscale to max 720p
Comment=Video Downscale to max 720p
Exec=video_downscale.sh %F
Icon-Name=stock_down
Selection=notnone
Extensions=mp4;wmv;avi;mkv;mov;webm;mpg
Quote=double
EscapeSpaces=true
Terminal=true

When using in Nemo, it's helpful to add the following to the very end of the video_downscale.sh script
to force a key to be pressed before closing the terminal to see the status or any errors:

echo;read -rsn1 -p "Press any key to continue . . .";echo

Reencode videos with high bitrate

processfiles.sh

#!/bin/bash
MYFILES=$(find /media/videofiles -type f -iname "*.mp4")
SAVEIFS=$IFS

IFS=$(echo -en "\n\b")
for FILE in ${MYFILES}
do
 bitrate=$(ffprobe -v quiet - select_streams v:0 -show_entries
stream=bit_rate -of default=noprint_wrappers=1:nokey=1 $FILE)
 if ! [[$bitrate =~ ^[0-9]+$]];
 then
 continue
 fi
 if [$bitrate -gt 8000000]
 then
 echo $bitrate" | "$FILE
 video_downscale.sh "$FILE"
 fi
done
IFS=$SAVEIFS

http://wuff.dyndns.org/doku.php?do=export_code&id=howto:convert-images&codeblock=8
http://wuff.dyndns.org/doku.php?do=export_code&id=howto:convert-images&codeblock=10

Last update: 2024/07/28 12:56 howto:convert-images http://wuff.dyndns.org/doku.php?id=howto:convert-images&rev=1722167788

http://wuff.dyndns.org/ Printed on 2026/01/17 18:39

From:
http://wuff.dyndns.org/ - Wulf's Various Things

Permanent link:
http://wuff.dyndns.org/doku.php?id=howto:convert-images&rev=1722167788

Last update: 2024/07/28 12:56

http://wuff.dyndns.org/
http://wuff.dyndns.org/doku.php?id=howto:convert-images&rev=1722167788

	Convert images/videos
	Lossless conversion of webp to png
	lossless conversion of png to webp
	lossless changing containers between webm/mov/mp4/mkv
	high quality conversion to mp4
	find all non-mp4 files
	downscale video to 720p mkv
	Reencode videos with high bitrate

